Dirichlet series induced by the Riemann zeta-function
نویسندگان
چکیده
منابع مشابه
q-Analogues of the Riemann zeta, the Dirichlet L-functions, and a crystal zeta function
A q-analogue ζq(s) of the Riemann zeta function ζ(s) was studied in [Kaneko et al. 03] via a certain q-series of two variables. We introduce in a similar way a q-analogue of the Dirichlet L-functions and make a detailed study of them, including some issues concerning the classical limit of ζq(s) left open in [Kaneko et al. 03]. We also examine a “crystal” limit (i.e. q ↓ 0) behavior of ζq(s). T...
متن کاملNotes Relating to Newton Series for the Riemann Zeta Function
This paper consists of the extended working notes and observations made during the development of a joint paper[?] with Philippe Flajolet on the Riemann zeta function. Most of the core ideas of that paper, of which a majority are due to Flajolet, are reproduced here; however, the choice of wording used here, and all errors and omissions are my own fault. This set of notes contains considerably ...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2008
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm187-2-4